

Environmental data gathering technologies for decommissioning Net Environmental Benefit Analysis (NEBA)

Peter Oliver Principal Environmental Scientist

London Convention Science Day 15 April 2021

Comparative Assessment and Net Environmental Benefit Analysis (NEBA)

- NEBA = objectivity, transparency and scientific approach comparing decommissioning alternatives
- NEBA alternative comparison based on ecosystem service value & balanced against other benefits and risks
- Communicates environmental and socio-economic changes associated with alternatives in clear, meaningful units

Level of Data Acquisition Required for NEBA

DATA LEVEL	LOW	MEDIUM	HIGH
Decommissioning Alternatives	Simple alternatives	Some complexity to alternatives	Complex range of alternatives
Use of Outputs	Internal assessment of alternatives	Internal use and some external visibility	High level of external interest/scrutiny
Level of detail	Qualitative	Semi-quantitative	Quantitative
Data Acquisition methods	Professional judgement	Data mining from existing ROV footage	Targeted campaigns using specialist equipment and expertise

Level of Data Acquisition Required for NEBA

DATA LEVEL	LOW	MEDIUM	HIGH
Decommissioning Alternatives	Simple alternatives	Some complexity to alternatives	Complex range of alternatives
Use of Outputs	Internal assessment of alternatives	Internal use and some external visibility	High level of external interest/scrutiny
Level of detail	Qualitative	Semi-quantitative	Quantitative
Data Acquisition methods	Professional judgement	Data mining from existing ROV footage	Targeted campaigns using specialist equipment and expertise

Methods for Assessing Offshore Environmental Values

Methods		Limitations
Jaws Strike pads	Seabed sampling (grabs, cores, trawls etc.)	 Distance from structures being assessed Seabed not representative of water column / structure-related species Limited numbers of point samples
	Diver surveys	 Safety risk Diving skills and taxonomic expertise required Depth limitations Time consuming, expensive
	Maintenance ROV footage	 Large volume of data available Video often low resolution, identification difficult Difficult to quantify size and area sampled Large, work-class ROVs can affect fish behaviour
	Mini-ROV with single camera	 High quality video Limited effect on fish behaviour Difficult to quantify size and area sampled

New Fish Survey Method: Mini-ROV with Stereo-Video

- Stereo-video measures XYZ coordinates:
 - Fish length (<u>+</u>1% accuracy)
 - Area/volume sampled
- High-def video allows species identification
- Mini-ROV = Limited effects on fish behaviour
- Can be used as a consistent method for platforms, pipelines, natural habitats
- Can retrofit stereo-cameras to existing ROVs

Collaboration between Chevron (Dr Michael Marnane) and Curtin University, Perth

Volume of Sample Unit

Stereo ROV Sampling Method

Note: controls were also collected. This involved flying the ROV in an identical pattern to the platform sampling at sites distant from all infrastructure

Example outputs of Stereo-Video Fish Surveys: detailed community assessments

Example outputs of Stereo-Video Fish Survey: Standing biomass and value

Average for jacket =

Rapid Biodiversity Assessments Methods: Environmental DNA (eDNA)

- eDNA detects organisms based on presence of DNA fragments in environment
- DNA detected in samples is then compared to a growing library of DNA sequences to determine taxa
- Whole-community eDNA assessments made possible due to recent advances in sequencing technology

Collaboration between Chevron (Dr Michael Marnane, Sarin Chaiyakul, Paweena Sitaworawet) and Curtin University, Perth

11

Example eDNA Survey Approach for Platform Jackets

Environmental DNA metabarcoding studies are NE PEDESTAL) 21.615 m () critically affected by substrate selection Adam Koziol, Michael Stat, Tiffany Simpson, Simon Jarman, Joseph DiBattista, Euan Harvey, Michael Marnane, Justin McDonald, Michael Bunce. Molecular Ecology Resources 2019 0-5m EL(-)11.582m 30m 50m **Bottom** (60-70m) ★ Biofoul Water Sediment

x 2 sides of Jacket

Example eDNA Sampling Approach for Offshore Structures

Biofoul:

- Scraper on ROV manipulator arm
- Collection funnels allow multiple samples per 'dive' to increase efficiency
- For shallow platforms: mini-ROVs were used, with small, fixed collection devices

Example eDNA Outputs using 18S Assay: Sediment Biodiversity for Jackets versus Control Sites

Comparison Between Jackets and Control Sites: Biodiversity Index of Taxa Present in Sediment + Biofoul

eDNA can also Detect Species of Interest or Concern

- Targeted PCR assays can provide greater resolution within a Phylum
- Can detect rare or endangered species
- Can detect invasive species

Alpheidae – Banded Shrimp

Arminidae - Nudibranch

Pomacentridae - Damselfish

Niphatidae - Demosponge

3D Photogrammetry: Marine Growth Volume, Roughness & Cover

- Uses multiple positions of video or still photos of same area to build up a 3D model
- Movement between images generates 3-E point clouds
- Reference photos stitched onto point clour to provide 3-D photomosaic
- Can be used to provide:
 - ➢ % cover
 - Surface roughness (indicator of habita quality)
 - ➢ Volume
 - Weight (if validated with scraping of biofoul)

Collaboration between Chevron (Sarin Chaiyakul, Paweena Sitaworawet, Peter Oliver) & Scottish Association of Marine Science & Tritonia Scientific Ltd.

3D Photogrammetry: Raw footage versus modelled comparison

Raw camera footage

Geometric mesh

High resolution tiled model

3D Photogrammetry: jacket leg example

3D Photogrammetry: Biovolume and Weight Calculation

- Digital removal of the volume of the platform leg (using schematics) generates estimates of:
 - biofoul volumeweight (using calibration factor)
- Can monitor changes in biofoul communities due to towing or monitor recovery after reefing
- Can address engineering questions: weight/heavy lift vessel requirements

Biovolume

Summary: New Technologies have Enhanced Data Quality for NEBA and Comparative Assessments

- Faster and cheaper
- Improved resolution
- Improved estimates of size and area
- Improved detection power
- Quantitative instead of qualitative
- Sets the foundation to move beyond ecological metrics and into socioeconomic value (e.g. fisheries)

Data Gaps and Future Research Needs

- Scaling fish biomass to socioeconomic value
 - Rigorous process required to estimate value in context of fisheries
- Impacts to biological communities when structures are moved
 - · How much biofoul is lost during decommissioning
 - What proportion of fish communities follow structures to new location?
 - How long does it take for recovery and to what end state?
- Other ecosystem service values
 - How do assets enhance connectivity among populations?
 - How do assets enhance fishery production through protection of spawning stocks?

human energy

Discussion

© 2021 Chevron